Abstract
Gallium nitride (GaN) has been established as a promising candidate for integrated electro-optic and photonic devices, aiming at applications from optical switching to signal processing. Studies of its optical nonlinearities, however, lack spectral coverage, especially in the telecommunications range. In this study, we measured the two-photon absorption coefficient (β) and the nonlinear index of refraction (n2) of GaN from the visible to the near-infrared by using femtosecond laser pulses. We observed an increase of β from (1.0 ± 0.2) to (2.9 ± 0.6) ×10−11 m/W as the photon energy approached the band gap from 1.77 up to 2.25 eV (700–550 nm), while n2 varied from (90 ± 30) ×10−20 up to (265 ± 80) ×10−20 m2/W within a broad spectral range, from 0.80 up to 2.25 eV (1550–550 nm). The results were modeled by applying a theory based on the second-order perturbation theory and the Kramers-Kronig relationship for direct-gap semiconductors, which are important for the development of GaN-based nonlinear photonic devices.
Subject
Radiology Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献