Affiliation:
1. State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
In quest of achieving compact and economic PW-level Ti:Sapphire (Ti:sa) lasers with a sub-15 fs pulse duration, a modified hybrid amplification scheme, which combines the optical parametric chirped pulse amplifier (OPCPA) and the chirped pulse amplifier (CPA), is presented and numerically investigated in this paper. The key characteristic of this scheme is that the conventional Ti:sa regenerative amplifier and preamplifier are replaced by a dual-crystal OPCPA front-end, which is spectrally matched with the upstream seed source and the downstream Ti:sa amplifiers and, therefore, can realize a broader spectrum. Moreover, some useful laser techniques are also applied to suppress the spectral gain narrowing and redshift in the Ti:sa CPA chain and to control the residual dispersion in the laser system. This way, fewer amplification stages and pump lasers are required to reach PW-level peak power compared with traditional all-CPA Ti:sa lasers. Numerical results indicate that pulse energy and spectral bandwidth can reach up to ∼22 J and ∼125 nm at full width at half maximum (FWHM), respectively, only by employing three-stage amplifiers. After compression, PW-level lasers with a ∼13.3 fs pulse duration are expected. This work can offer a promising route for the development of compact and economic PW-level Ti:sa lasers.
Funder
National Key R&D Program of China
Chinese Academy of Sciences President’s International Fellowship Initiative
National Natural Science Foundation of China
Shanghai Science and Technology Committee Program
Shanghai Sailing Program
Youth Innovation Promotion Association of the Chinese Academy of Sciences
International Partnership Program of Chinese Academy of Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 超宽带高阈值色散调控超快激光薄膜研究进展(特邀);Acta Optica Sinica;2024