Abstract
In this work, we present the fabrication and characterization of solution-processable red Phosphorescent Organic Light-Emitting Diodes (PhOLEDs). The proposed approach is based on Ir(III) complex, namely Bis(2-(3,5-dimethylphenyl)quinoline-C,N)(acetylacetonato)Iridium(III), also known as Ir(dmpq)2(acac), which was doped in four different host materials: (a) 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP), (b) 1,3-Bis(N-carbazolyl)benzene (mCP), (c) 1,1-Bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), and (d) tris(4-carbazoyl-9-ylphenyl)amine (TCTA). The metal–organic complex offers unique optical and electronic properties arising from the interplay between the inorganic metal and the organic material. The optical and photophysical properties of the produced thin films are investigated in detail using spectroscopic ellipsometry and photoluminescence, whereas the structural characteristics are examined by atomic force microscopy. This comparative study of the four different Host:Ir-complex systems provides valuable information to evaluate the emission characteristics in order to achieve pure red light. Finally, these materials were applied as a single-emissive layer in PhOLED devices, and the electroluminescence characteristics were studied.
Funder
European Regional Development Fund of the European Union
Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation
RESEARCH—CREATE—INNOVATE
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献