Abstract
Compact fiber-based sources generating optical pulses with a broadband spectrum in the mid-IR range are in demand for basic science and many applications. Laser systems producing tunable Raman solitons in special soft-glass fibers are of great interest. Here, we report experimental microstructured tellurite fibers and demonstrate by numerical simulation their applicability for nonlinear soliton conversion in the mid-infrared (-IR) range via soliton self-frequency shift. The fiber dispersion and nonlinearity are calculated for experimental geometry. It is shown numerically that there are two zero dispersion wavelengths for the core size of 2 μm and less. In such fibers, efficient Raman soliton tuning is attained up to a central wavelength of 4.8 μm using pump pulses at 2.8 μm.
Funder
Russian Foundation for Basic Research
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献