Towards Quantum Noise Squeezing for 2-Micron Light with Tellurite and Chalcogenide Fibers with Large Kerr Nonlinearity

Author:

Sorokin Arseny A.,Leuchs GerdORCID,Corney Joel F.,Kalinin Nikolay A.,Anashkina Elena A.ORCID,Andrianov Alexey V.

Abstract

Squeezed light—nonclassical multiphoton states with fluctuations in one of the quadrature field components below the vacuum level—has found applications in quantum light spectroscopy, quantum telecommunications, quantum computing, precision quantum metrology, detecting gravitational waves, and biological measurements. At present, quantum noise squeezing with optical fiber systems operating in the range near 1.5 μm has been mastered relatively well, but there are no fiber sources of nonclassical squeezed light beyond this range. Silica fibers are not suitable for strong noise suppression for 2 µm continuous-wave (CW) light since their losses dramatically deteriorate the squeezed state of required lengths longer than 100 m. We propose the generation multiphoton states of 2-micron 10-W class CW light with squeezed quantum fluctuations stronger than −15 dB in chalcogenide and tellurite soft glass fibers with large Kerr nonlinearities. Using a realistic theoretical model, we numerically study squeezing for 2-micron light in step-index soft glass fibers by taking into account Kerr nonlinearity, distributed losses, and inelastic light scattering processes. Quantum noise squeezing stronger than −20 dB is numerically attained for a customized As2Se3 fibers with realistic parameters for the optimal fiber lengths shorter than 1 m. For commercial As2S3 and customized tellurite glass fibers, the expected squeezing in the −20–−15 dB range can be reached for fiber lengths of the order of 1 m.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Foundation for Basic Research

Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3