Multi-Scale Cyclic Image Deblurring Based on PVC-Resnet

Author:

Zhang Kai1,Chen Minhui1,Zhu Dequan1,Liu Kaixuan1,Zhao Haonan1,Liao Juan1ORCID

Affiliation:

1. College of Engineering, Anhui Agricultural University, Hefei 230036, China

Abstract

Aiming at the non-uniform blurring of image caused by optical system defects or external interference factors, such as camera shake, out-of-focus, and fast movement of object, a multi-scale cyclic image deblurring model based on a parallel void convolution-Resnet (PVC-Resnet) is proposed in this paper, in which a multi-scale recurrent network architecture and a coarse-to-fine strategy are used to restore blurred images. The backbone network is built based on Unet codec architecture, where a PVC-Resnet module designed by combinations of parallel dilated convolution and residual network is constructed in the encoder of the backbone network. The convolution receptive field is expanded with parallel dilated convolution to extract richer global features. Besides, a multi-scale feature extraction module is designed to extract the shallow features of different scale targets in blurred images, and then the extracted features are sent to the backbone network for feature refinement. The SSIM loss function and the L1 loss function are combined to construct the SSIM-L1 joint loss function for the optimization of the overall network to ensure that the image restoration at different stages can be optimized. The experimental results show that the average peak signal-to-noise ratio (PSNR) of the proposed model on different data sets is as high as 32.84 dB, and the structural similarity (SSIM) reaches 0.9235. and statistical structural similarity (Stat-SSIM) of 0.9249 on different datasets. Compared with other methods, the deblurred images generated by this method are superior to the methods proposed by Nah et al., Kupyn et al. and Cho S J et al., especially on the calibration board data set. The model proposed in this paper applies parallel dilated convolution and SSIM-L1 joint loss function to improve the performance of the network so that the edge and texture details of the restored image are clearer.

Funder

National Natural Science Foundation of China

Key R&D Program of China

Natural Science Foundation of Anhui

Key R&D Program of Anhui

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3