Affiliation:
1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2. Shanghai Industrial µTechnology Research Institute, Shanghai 201800, China
Abstract
With the advent of 5G, artificial intelligence (AI), Internet of Things (IoT), cloud computing, Internet plus, and so on, data traffic is exploding and higher requirements are put forward for information transmission and switching. Traditional switching requires optical/electrical/optical conversions, which brings additional power consumption and requires the deployment of large amounts of cooling equipment. This increases the cost and complexity of the system. Moreover, limited by the electronic bottleneck, electrical switching will suffer from many problems such as bandwidth, delay, crosstalk, and so on, with the continuous reduction in device footprint. Optical switching does not require optical/electrical/optical conversions and has lower power consumption, larger capacity, and lower cost. Silicon photonic switches received much attention because of their compatibility with the complementary metal-oxide-semiconductor (CMOS) process and are anticipated to be potential candidates to replace electrical switches in many applications such as data center and telecommunication networks. 2 × 2 silicon photonic switches are the basic components to build the large-scale optical switching matrices. Thus, this review article mainly focuses on the principle and state of the art of 2 × 2 silicon photonic switches, including electro-optic switches, thermo-optic switches, and nonvolatile silicon photonic switches assisted by phase-change materials.
Funder
National Natural Science Foundation of China
Strategic Pioneer Research Projects of Defense Science and Technology
Shanghai Sailing Program
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献