Author:
Zhong Hua,Li Jingchi,He Yu,Zhang Ruihuan,Wang Hongwei,Shen Jian,Zhang Yong,Su Yikai
Abstract
AbstractUltra-low-power consumption and high-speed integrated switches are highly desirable for future data centers and high-performance optical computers. In this study, we proposed an ultra-low-power consumption silicon electro-optic switch based on photonic crystal nanobeam cavities on a foundry platform. The proposed switch showed an ultra-low static-tuning power of 0.10 mW and a calculated dynamic switching power of 6.34 fJ/bit, with a compact footprint of 18 μm × 200 μm. Additionally, a 136-Gb/s four-level pulse amplitude modulation signal transmission experiment was carried out to verify the capability of the proposed electro-optic switch to support high-speed data transmission. The proposed device has the lowest static-tuning power consumption among silicon electro-optic switches and the highest data transmission rate. The results demonstrate the potential applications of this switch in high-performance optical computers, data center interconnects, optical neural networks, and programmable photonic circuits.
Funder
National Natural Science Foundation of China
Shanghai Municipal of Science and Technology Major Project
Publisher
Springer Science and Business Media LLC