Design of Compact, Broadband, and Low-Loss Silicon Waveguide Bends with Radius under 500 nm

Author:

Zhang Zhekang,Shi Yuchen,Shao Bo,Zhou Taotao,Luo Fan,Xu YinORCID

Abstract

Waveguide bend is an indispensable component in the on-chip compact photonic integrated circuits (PICs) and the minimum bend size greatly limits the increase of integration density of PICs. Here, we propose broadband and low-loss silicon waveguide bend schemes using air trenches on both sides and embedded germanium arc in the inner side of waveguide bend. Using these ways, the silicon waveguide bending radius can be greatly reduced to less than 500 nm and the obtained insertion loss (IL) can be as low as 0.12 dB compared with IL = 1.73 dB obtained by direct silicon waveguide bend under the same bending radius. Meanwhile, the working bandwidth can be extended over 500 nm covering the whole optical communication band by keeping IL < 0.5 dB. Therefore, the proposed device schemes could push the development of on-chip PICs toward higher integration density.

Funder

Natural Science Foundation of Jiangsu Province

Fundamental Research Founds for the Central Universities

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in machine learning optimization for classical and quantum photonics;Journal of the Optical Society of America B;2024-02-01

2. Ultra-compact and efficient photonic waveguide bends with different configurations designed by topology optimization;2023-11-28

3. Compact Low-Loss Dual-Mode Silicon Waveguide Bend with Simple Geometry;2023 21st International Conference on Optical Communications and Networks (ICOCN);2023-07-31

4. Low-loss Silicon Dual-mode Waveguide Bend with 900nm Width and 3μm Radius;2023 Opto-Electronics and Communications Conference (OECC);2023-07-02

5. Universal CMOS-Foundry Compatible Platform for Ultra-Low Loss SOI Waveguide Bends;2023 Optical Fiber Communications Conference and Exhibition (OFC);2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3