Abstract
Waveguide bend is an indispensable component in the on-chip compact photonic integrated circuits (PICs) and the minimum bend size greatly limits the increase of integration density of PICs. Here, we propose broadband and low-loss silicon waveguide bend schemes using air trenches on both sides and embedded germanium arc in the inner side of waveguide bend. Using these ways, the silicon waveguide bending radius can be greatly reduced to less than 500 nm and the obtained insertion loss (IL) can be as low as 0.12 dB compared with IL = 1.73 dB obtained by direct silicon waveguide bend under the same bending radius. Meanwhile, the working bandwidth can be extended over 500 nm covering the whole optical communication band by keeping IL < 0.5 dB. Therefore, the proposed device schemes could push the development of on-chip PICs toward higher integration density.
Funder
Natural Science Foundation of Jiangsu Province
Fundamental Research Founds for the Central Universities
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献