Propagation of a Modified Complex Lorentz–Gaussian-Correlated Beam in a Marine Atmosphere

Author:

Sun Baoyin,Lü Han,Wu Dan,Wang Fei,Cai Yangjian

Abstract

In this paper, we study the second-order statistics of a modified complex Lorentz–Gaussian-correlated (MCLGC) beam, which is a new type of partially coherent beam capable of producing an Airy-like intensity pattern in the far field, propagation through marine atmospheric turbulence. The propagation formula of spectral density is derived by the extended Huygens–Fresnel integral, which could explicitly indicate the interaction of turbulence on the beams’ spectral density under propagation. The influences of the structure constant of the turbulence, initial coherence width and wavelength on the spectral density are investigated in detail through numerical examples. In addition, analytical expressions for the r.m.s beam width, divergence angle and M2 factor of the MCLGC beam in the marine turbulence are also derived with the help of the Wigner distribution function. The results reveal that the beam spreads much faster, and the M2 factor deteriorates severely with the increase of the structure constant and the decrease of the inner scale size, whereas the outer scale size has little effect on these two quantities.

Funder

National Key Research and Development Project of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3