An Indoor Visible Light Positioning System for Multi-Cell Networks

Author:

Martínez-Ciro Roger AlexanderORCID,López-Giraldo Francisco EugenioORCID,Luna-Rivera José MartínORCID,Ramírez-Aguilera Atziry MagalyORCID

Abstract

Indoor positioning systems based on visible light communication (VLC) using white light-emitting diodes (WLEDs) have been widely studied in the literature. In this paper, we present an indoor visible-light positioning (VLP) system based on red–green–blue (RGB) LEDs and a frequency division multiplexing (FDM) scheme. This system combines the functions of an FDM scheme at the transmitters (RGB LEDs) and a received signal strength (RSS) technique to estimate the receiver position. The contribution of this work is two-fold. First, a new VLP system with RGB LEDs is proposed for a multi-cell network. Here, the RGB LEDs allow the exploitation of the chromatic space to transmit the VLP information. In addition, the VLC receiver leverages the responsivity of a single photodiode for estimating the FDM signals in RGB lighting channels. A second contribution is the derivation of an expression to calculate the optical power received by the photodiode for each incident RGB light. To this end, we consider a VLC channel model that includes both line-of-sight (LOS) and non-line-of-sight (NLOS) components. The fast Fourier transform (FFT) estimates the powers and frequencies of the received FDM signal. The receiver uses these optical signal powers in the RSS-based localization application to calculate the Euclidean distances and the frequencies for the RGB LED position. Subsequently, the receiver’s location is estimated using the Euclidean distances and RGB LED positions via a trilateration algorithm. Finally, Monte Carlo simulations are performed to evaluate the error performance of the proposed VLP system in a multi-cell scenario. The results show a high positioning accuracy performance for different color points. The average positioning error for all chromatic points was less than 2.2 cm. These results suggest that the analyzed VLP system could be used in application scenarios where white light balance or luminaire color planning are also the goals.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3