Analysis of 3D positioning error for multipath indoor VLC system

Author:

Rangappa Karibasappa12,Kumar Ajit2ORCID

Affiliation:

1. Department of Electronics & Communication Engineering Government Engineering College Ramanagara Ramanagara Karnataka India

2. School of Engineering, Electronics & Communication Presidency University Bengaluru, Karnataka India

Abstract

SummaryA comparative analysis of 3D positioning error for two different configurations using different layouts of visible light communication (VLC) systems is presented in this paper. The Received Signal Strength (RSS) has been implemented for indoor localization systems using Line‐of‐Sight (LoS) and diffused reflection signals. The room size for configuration‐1 is 5 m × 5 m × 3 m, and the distance between adjacent LEDs is 2.5 m, 2.00 m, and 1.5 m for cases‐1, case‐2, and case‐3, respectively, whereas the room size for configuration‐2 is 7 m × 7 m × 5 m, and the separation between the LEDs is 3.5 m, 3 m, and 2.5 m for their respective cases. Through investigation, it has been shown that when only LS signal is considered, the separation between LEDs may not be an issue because positioning error changes by a very small amount as the separation between LEDs changes. The results show that as the distance between adjacent LEDs decreases, the received signal strength for LoS and L‐R1 signals increases. However, positioning error and BER rise, while the bit rate falls. Furthermore, the positioning error Vs receiver plane height for all three cases in configuration‐1 is the same up to a height of 2.89 m, whereas the positioning error in configuration‐2 is the same up to 4.4 m for all cases. The positioning error for case‐1 decreases as the height in configuration‐1 exceeds 2.89 m. Similarly, after reaching a height of 4.4 m for case‐2, the positioning error in configuration‐2 decreases. The LoS positioning error versus semi angle of the LED as well as the FOV of the receiver has been simulated for different positions of the receiver in configuration‐1. The investigation shows that the minimum positioning error is achieved at and FOV equal to 66.660 for all the positions of the receiver in the room. Thus, before configuring a practical indoor VLC geometrical model, proper VLC configurations such as LED separation, FOV of the receiver, semi angle of LED, and receiver height should be chosen based on the room dimensions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3