Output Power Monitoring of Ultraviolet Light-Emitting Diode via Sapphire Substrate

Author:

Chen Ching-Hua,Zhang Jia-Jun,Wang Chang-Han,Chou Tzu-Chieh,Chan Rui-Xiang,Yeh Pinghui S.ORCID

Abstract

Ultraviolet (UV) light plays an important role in air/water/surface sterilization now. Maintaining a certain light intensity is often required to attain the targeted effect. In this paper, on-chip power monitoring of a UV-A light-emitting diode (LED) via sapphire substrate is reported. A p–i–n photodiode loop that surrounds the UV-A LED was designed and fabricated to monitor the output power by detecting the scattered light of the LED propagating through the sapphire substrate. No particular waveguide structure or processing parameter control was needed. The monitoring responsivities per unit of surface-emitting power obtained were approximately 21 and 25 mA/W at photodiode biases of 0 and 3 V, respectively. When combined with a transimpedance amplifier, a monitoring responsivity of 1.87 V/mW at zero bias was measured, and a different monitoring responsivity could be customized by adjusting the gain of the transimpedance amplifier. The operation principle of this device might be applicable to UV-B or UV-C LEDs.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3