Detailed Balance-Limiting Efficiency of Solar Cells with Dual Intermediate Bands Based on InAs/InGaAs Quantum Dots

Author:

Wang Shenglin,Yang XiaoguangORCID,Chai Hongyu,Lv Zunren,Wang Shuai,Wang Haomiao,Wang Hong,Meng Lei,Yang Tao

Abstract

The intermediate-band solar cell (IBSC) has been proposed as a high-efficiency solar cell because of the extended absorption it allows for, which results from the intermediate band. In order to further increase the efficiency of IBSCs, we study a novel device with dual intermediate bands. Because of the extended absorption from the second intermediate band, the efficiency of a dual IBSC can reach 86.5% at a full concentration. Moreover, we study the performance of the IBSC based on InAs/InGaAs quantum dots. The efficiency of the device is shown to be able to reach 74.4% when the In composition is 75%. In addition, the transition process between the dual intermediate bands greatly affects the efficiency, so it is important to design the dual intermediate bands in a precise manner.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3