Affiliation:
1. Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
Abstract
As a fundamental concept, geometry is widely used in understanding physical phenomena. In quantum mechanics, geometry is related to the system’s quantum state and can be characterized by the quantum geometric tensor (QGT), whose real part is referred to as the quantum metric tensor (QMT), which defines the distance between two neighboring quantum states in the projected Hilbert space. Several pieces of research based on discrete variables have been proposed to extract the QMT, but research with the use of continuous variables is lacking. Here, we propose a method to extract the QMT of a continuous variable system, specified here as a cat-qubit. The method is developed by constructing the Kerr nonlinear parametric oscillator (KNPO) and by modulating it with external drives to induce adiabatic dynamics process within the state subspace spanned by the even and odd Scho¨dinger cat states. The method paves the way for exploring the geometry for continuous variable systems.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献