Fast topological pumps via quantum metric engineering on photonic chips

Author:

Song Wange1ORCID,You Oubo2ORCID,Sun Jiacheng1,Wu Shengjie1,Chen Chen1ORCID,Huang Chunyu1,Qiu Kai1,Zhu Shining1ORCID,Zhang Shuang234ORCID,Li Tao1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.

2. New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China.

3. Department of Electronic and Electrical Engineering, University of Hong Kong, Hong Kong, China.

4. Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P.R. China.

Abstract

Topological pumps have garnered substantial attention in physics. However, the requirement for slow evolution speed to satisfy adiabaticity greatly restricts their application in on-chip devices. Here, we discover a direct link between adiabaticity and quantum metric, the real part of quantum geometry that has been relatively less explored compared to its imaginary counterpart, the Berry curvature. We demonstrate that the evolution speed of topological pumps between nontrivial edge states can be increased by reducing the quantum metric via introduction of long-range coupling to the celebrated Rice-Mele model. This fast topological pump can occur without affecting the bulk state evolution, which challenges the common understanding. We experimentally confirm our findings by using a platform consisting of bilayer integrated silicon waveguides operating at telecommunication wavelengths. Our work provides possibilities for lifting topological pumps from the constraints of slow evolution and paves the way toward compact photonic integration.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3