DNN-Based Physical-Layer Network Coding for Visible Light Communications

Author:

Wang Xuesong,Zhang Runxin,Xie Xinyan,Lu LuORCID

Abstract

The key difference between visible light communication (VLC) and radio frequency (RF) communication is the former’s line-of-sight (LOS) transmission nature, and hence a relay node has to be adopted for VLC to extend its coverage. Physical-layer network coding (PNC) has the advantage of doubling the throughput of a two-way relay network (TWRN), where two end nodes exchange information via the help of a relay, compared with the conventional store-and-forward routing strategy. Although PNC has been studied for VLC in the literature, the state-of-the-art schemes are highly inefficient, requiring tight phase synchronization between the two end nodes, and hence difficult to realize. This paper proposes the application of a deep neural network (DNN) to a PNC VLC system, named DP-VLC, that enables misaligned phases and can deal with the light channel gains and noises in a satisfactory manner without introducing additional computation complexities. We implement DP-VLC using the universal software radio peripheral (USRP) software radio platform and a self-developed VLC optical front-end using commercial off-the-shelf (COTS) light-emitting diodes (LEDs) and photo-diodes (PDs). We find that irregular constellations generated by DP-PNC can be transmitted and recovered in a 1.5 m VLC link effectively. Experimental results show that our DP-PNC prototype performs better than conventional PNC VLC system when the signal-interference-to-noise ratio (SINR) of received optical signals is larger than 13.63 dB and can achieve a throughput of up to 77.38 Mbps in a 20 MHz channel under PNC scheme when the SINR is 22.86 dB. More importantly, we find that DP-VLC performs even better than fixed-constellation PNC system in the saturated SINR regime (e.g., 20–25 dB) where non-linear effects may happen compared with moderate SINR regimes (e.g., 10–20 dB), showing its adaptability to unpredictable impairments in optical links. Our first attempt at realizing DNN-based optical PNC in a TWRN has paved the way for future PNC-enhanced VLC systems.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3