SiN‐On‐SOI Optical Phased Array LiDAR for Ultra‐Wide Field of View and 4D Sensing

Author:

Chen Baisong1,Li Yingzhi1,Xie Qijie2,Na Quanxin2,Tao Min1,Wang Ziming1,Zhi Zihao1,Hu Heming1,Li Xuetong1,Qu Huan1,He Yafang1,Hu Xiaolong1,Lo Guoqiang3,Song Junfeng12ORCID

Affiliation:

1. State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 China

2. Peng Cheng Laboratory Shenzhen 518000 China

3. Advance Micro Foundry Pte. Ltd. 11 Science Park Road Science Park II 117685 Singapore

Abstract

Abstract3D imaging techniques are facilitating autonomous vehicles to build intelligent systems. Optical phased arrays (OPAs) featured by all solid‐state configurations are becoming a promising solution for 3D imaging. However, the majority of state‐of‐art OPAs commonly suffer from severe power degradation at the edge of the field of view (FoV), resulting in limited effective FoV and deteriorating 3D imaging quality. Here, the chained grating antenna and the vernier concept is synergized to design a novel OPA for realizing a record wide 160°‐FoV 3D imaging. By virtue of the chained antenna, the OPA exhibits less than 3‐dB beam power variation within the 160°FoV. In addition, two OPAs with different pitches are integrated monolithically to form a quasi‐coaxial Vernier OPA transceiver. With the aid of a flat beam power profile provided by the chained antennas, the OPA exhibits uniform beam quality at an arbitrary steering angle. The superior beam steering performance enables the OPA to accomplish 160° wide‐FoV 3D imaging based on the frequency‐modulated continuous‐wave (FMCW) LiDAR scheme. The ranging accuracy is 5.5‐mm. Moreover, the OPA is also applied to velocity measurement for 4D sensing. To the best of knowledge, it is the first experimental implementation of a Vernier OPA LiDAR on 3D imaging to achieve a remarkable FoV.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Program for Jilin University Science and Technology Innovative Research Team

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3