Abstract
This paper investigates the employment of reconfigurable intelligent surfaces (RISs) to improve the asymptotic capacity of the multiple-input single-output (MISO) visible light communication (VLC) system in the case of high signal-to-noise (SNR). For the RIS-aided MISO-VLC system based on mirror array, we regard the high-SNR asymptotic capacity with the input subject to peak-intensity constraints as a goal and formulate an asymptotic capacity maximization problem to find the optimal orientations of mirrors. As for the non-convex optimization problem, we convert it into a quadratic programming (QP) problem with hemispherical constraints and prove that it can be solved by computing the maximum eigenvalue of an equivalent matrix. Simulation results indicate that the asymptotic capacity is able to be improved significantly by adopting RIS in MISO-VLC systems. Meanwhile, we observe that the proper deployment scheme of RIS is able to enhance the degree of improvement through several simulations.
Funder
National Natural Science Foundation of China
National Key Research and Development Project
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献