Survey on Optical Wireless Communication with Intelligent Reflecting Surfaces

Author:

Fang Chengwei1ORCID,Li Shuo1ORCID,Wang Yinong2ORCID,Wang Ke1ORCID

Affiliation:

1. School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC 3000, Australia

2. School of Architecture and Urban Design, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC 3000, Australia

Abstract

Optical Wireless Communication (OWC) technology has gained significant attention in recent years due to its potential for providing high-data-rate wireless connections through the large license-free bandwidth available. A key challenge in OWC systems, similar to high-frequency Radiofrequency (RF) systems, is the presence of dead zones caused by obstacles like buildings, trees, and moving individuals, which can degrade signal quality or disrupt data transmission. Traditionally, relays have been used to mitigate these issues. Intelligent Reflecting Surfaces (IRSs) have recently emerged as a promising solution, enhancing system performance and flexibility by providing reconfigurable communication channels. This paper presents an overview of the application of IRSs in OWC systems. Specifically, we categorize IRSs into two main types: mirror array-based IRSs and metasurface-based IRSs. Furthermore, we delve into modeling approaches of mirror array-based IRSs in OWC and analyze recent advances in IRS control, which are classified into system power or gain optimization-oriented, system link reliability optimization-oriented, system data rate optimization-oriented, system security optimization-oriented, and system energy optimization-oriented approaches. Moreover, we present the principles of metasurface-based IRSs from a physical mechanism perspective, highlighting their application in OWC systems through the distinct roles of light signal refraction and reflection. Finally, we discuss the key challenges and potential future directions for integrating IRS with OWC systems, providing insights for further research in this promising field.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3