Abstract
(1) Background: We present a fast generative adversarial network (GAN) for generating high-fidelity optical coherence tomography (OCT) images. (2) Methods: We propose a novel Fourier-FastGAN (FOF-GAN) to produce OCT images. To improve the image quality of the synthetic images, a new discriminator with a Fourier attention block (FAB) and a new generator with fast Fourier transform (FFT) processes were redesigned. (3) Results: We synthesized normal, diabetic macular edema (DME), and drusen images from the Kermany dataset. When training with 2800 images with 50,000 epochs, our model used only 5 h on a single RTX 2080Ti GPU. Our synthetic images are realistic to recognize the retinal layers and pathological features. The synthetic images were evaluated by a VGG16 classifier and the Fréchet inception distance (FID). The reliability of our model was also demonstrated in the few-shot learning with only 100 pictures. (4) Conclusions: Using a small computing budget and limited training data, our model exhibited good performance for generating OCT images with a 512 × 512 resolution in a few hours. Fast retinal OCT image synthesis is an aid for data augmentation medical applications of deep learning.
Funder
National Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献