Cryogenic Systems for Astronomical Research in the Special Astrophysical Observatory of the Russian Academy of Sciences

Author:

Balega Yurii1,Bolshakov Oleg2,Chernikov Aleksandr23,Edelman Valerian4,Eliseev Aleksandr2,Emelyanov Eduard1ORCID,Gunbina Aleksandra2ORCID,Krasilnikov Artem12,Lesnov Ilya2ORCID,Mansfeld Mariya12,Markelov Sergey1,Markina Mariya4,Mitiani Guram1,Pevzner Evgenii2,Tyatushkin Nickolay2,Valyavin Gennady1,Vdovin Anton12,Vdovin Vyacheslav12

Affiliation:

1. Special Astrophysical Observatory Russian Academy of Sciences, Nizhnij Arkhyz 369167, Russia

2. A.V. Gaponov-Grekhov Institute of Applied Physics Russian Academy of Sciences, Nizhniy Novgorod 603950, Russia

3. Joint Institute for Nuclear Research, Dubna 141980, Russia

4. P.L. Kapitza Institute for Physical Problems Russian Academy of Sciences, Moscow 119334, Russia

Abstract

This article presents the main results and new plans for the development of receivers which are cooled cryogenically to deep cryogenic temperatures and used in optical and radio astronomy research at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) on both the Big Telescope Alt-Azimuthal optical telescope (BTA) and the Radio Astronomical Telescope Academy of Sciences (RATAN-600) radio telescope, 600 m in diameter. These two instruments almost completely cover the frequency range from long radio waves to the IR and optical bands (0.25–8 mm on RATAN and 10–0.3 μm, on BTA) with a certain gap in the terahertz part (8–0.01 mm) of the spectrum. Today, this range is of the greatest interest for astronomers. In particular, the ALMA (Atacama Large Millimeter Array) observatory and the worldwide network of modern telescopes called the EVH (Event Horizon Telescope) operate in this range. New developments at SAO RAS are aimed at mastering this part of the spectrum. Cryogenic systems of receivers in these ranges are a key element of the system and differ markedly from the cooling systems of optical and radio receivers that ensure cooling of the receivers to sub-Kelvin temperatures.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference56 articles.

1. Bayesian Statistics Approach to Imaging of Aperture Synthesis Data: RESOLVE Meets ALMA;Tychoniec;Phys. Sci. Forum,2022

2. ALMA Observatory (2023, November 10). About ALMA, at First Glance|ALMA. Available online: https://www.almaobservatory.org/en/about-alma.

3. Sachkov, M., de Castro, A.I.G., Shustov, B., Sichevsky, S., and Shugarov, A. (2022). Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, SPIE.

4. Chen, Z.-R., Tsai, W.-C., Huang, S.-F., Li, T.-Y., and Song, C.-Y. (2022). Classification of Plank Techniques Using Wearable Sensors. Sensors, 22.

5. Khokhriakova, A.D., Chugunov, A.I., Popov, S.B., Gusakov, M.E., and Kantor, E.M. (2022). Observability of HOFNARs at SRG/eROSITA. Universe, 8.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3