Photoluminescence Enhancement and Carrier Dynamics of Charged Biexciton in Monolayer WS2 Coupled with Plasmonic Nanocavity

Author:

Geng Huiqiang1ORCID,Liu Qirui1,Tang Yuxiang2,Wei Ke1

Affiliation:

1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China

2. Institute for Quantum Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Monolayer two-dimensional transition metal dichalcogenide (TMD)-based materials have become one of the ideal platforms for the study of multibody interactions due to their rich excitonic complexes. The coupling between optical nanocavity and material has become an important means for manipulating the optical properties of materials, but there are few studies on the coupling of nanocavities and the multi-body effect in materials. In this study, we investigate the optical properties of silver nanodisk (Ag ND) arrays covering a monolayer WS2. In the experimental sample, we observed a ~114.3-fold photoluminescence enhancement of charged biexciton in the heterostructure region, as compared to the monolayer WS2 region, a value which is much higher than those for exciton (~2.2-fold) and trion (~16.4-fold), a finding which is attributed to the Fano resonant coupling between monolayer WS2 and the Ag ND. By means of time-resolved spectroscopy, we studied the carrier dynamics in the hybrid system. Our findings reveal that resonant coupling promotes the formation and radiation recombination processes of the charged biexciton, significantly reducing the radiative recombination lifetime by ~15-fold, which is much higher than the measurement in exciton (~2-fold). Our results provide an opportunity to understand the multibody physics of coupling with nanocavities, which could facilitate the application of multi-body excitons in the fields of light-emitting devices and lasers, etc.

Funder

National Natural Science Foundation of China

The Scientific Researches Foundation of the National University of Defense Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3