Abstract
Interconnecting networks adopting Fast Optical Switches (FOS) can achieve high bandwidth, low latency, and low power consumption. We propose and demonstrate a novel interconnecting topology based on FOS (FOSquare) with distributed fast flow control which is suitable for HPC infrastructures. We also present an Optimized Mapping (OPM) algorithm that maps the most communication-related processes inside a rack. We numerically investigate and compare the network performance of FOSquare with Leaf-Spine under real traffic traces collected by running multiple applications (CG, MG, MILC, and MINI_MD) in an HPC infrastructure. The numerical results show that the FOSquare can reduce >10% latency with respect to Leaf-Spine under the scenario of 16 available cores.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Reference25 articles.
1. TOP500 Listhttp://top500.org/lists/2017/06
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献