Time vs. Capacity—The Potential of Optimal Charging Stop Strategies for Battery Electric Trucks

Author:

Zähringer MaximilianORCID,Wolff SebastianORCID,Schneider Jakob,Balke GeorgORCID,Lienkamp Markus

Abstract

The decarbonization of the transport sector, and thus of road-based transport logistics, through electrification, is essential to achieve European climate targets. Battery electric trucks offer the greatest well-to-wheel potential for CO2 saving. At the same time, however, they are subject to restrictions due to charging events because of their limited range compared to conventional trucks. These restrictions can be kept to a minimum through optimal charging stop strategies. In this paper, we quantify these restrictions and show the potential of optimal strategies. The modeling of an optimal charging stop strategy is described mathematically as an optimization problem and solved by a genetic algorithm. The results show that in the case of long-distance transport using trucks with battery capacities lower than 750 kWh, a time loss is to be expected. However, this can be kept below 20 min for most battery capacities by optimal charging stops and sufficient charging infrastructure.

Funder

Federal Government of Germany

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference45 articles.

1. Statista, CO2-Ausstoß Weltweit Nach Sektoren | Statistahttps://de.statista.com/statistik/daten/studie/167957/umfrage/verteilung-der-co-emissionen-weltweit-nach-bereich/

2. Directorate General for Mobility and Transport, EU Transport in Figures: Statistical Pocketbook 2021,2021

3. Umweltbundesamt, CO2-Gesetzgebung: Flottenzielwerte für Schwere Nutzfahrzeugehttps://www.umweltbundesamt.de/themen/verkehr-laerm/emissionsstandards/schwere-nutzfahrzeuge

4. Technoecological analysis of energy carriers for long‐haul transportation

5. Multi-disciplinary design optimization of life cycle eco-efficiency for heavy-duty vehicles using a genetic algorithm

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3