Abstract
The paper presented the dynamics of a vehicle fueled by hybrid fuel, i.e., LPG–DME mixture. The basis for the assessment was the T-ω characteristics of the SI engine with a capacity of 1.6 dm3, determined by the authors for several selected loads and DME mass shares in the engine supply mixture. The analysis and comparison of the impact of the composition of the LPG–DME mixture on the dynamic properties were carried out for the passenger car OPEL Astra, powered by an engine for which T- ω characteristics were determined earlier on the test bench. It has been shown that the mass share of DME in the LPG–DME mixture does not significantly reduce the dynamic index of the car. In addition, the scope of changes in the mass fraction of DME in the mixture was also determined, which will ensure the vehicle performance similar to the power and torque parameters obtained for an engine powered solely by LPG. The received results have made it possible to determine changes in the value of the maximum dynamic coefficient, maximum acceleration, and car acceleration time for selected engine loads and various DME shares in the mixture. The thesis that DME can be considered as an activator of the combustion process and may have an impact on the vehicle dynamics is confirmed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference24 articles.
1. ITF Transport Outlookhttps://www.itf-oecd.org/itf-transport-outlook-2021
2. Liquid Gas Europe Annual Reviewhttps://www.liquidgaseurope.eu/publications/annual-review-2020
3. IDA Fact Sheet No. 2https://www.aboutdme.org/aboutdme/files/ccLibraryFiles/Filename/000000001520/IDA_Fact_Sheet_2_Transportation_Fuel.pdf
4. Volvo Group–Driving Prosperity through Transport Solutionshttps://www.volvo.com/
5. Renewable Fuels for Internal Combustion Engines
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献