Inclusions Control and Refining Slag Optimization for Fork Flat Steel

Author:

Ge Yangyang,Zhao Shuo,Ma Liang,Yan Tao,Li Zushu,Yang Bin

Abstract

In order to investigate the causes of the large number of cracks and porosities formed in 33MnCrTiB fork flat steel produced by a special steel plant, scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) analysis, and large sample electrolysis of the obtained steel samples were carried out in different steps of the steelmaking processes. The main micro-inclusions in the fork flat steel samples were Al2O3, CaO-MgO-Al2O3-SiO2, and TiN, and the macro-inclusions were mainly Al2O3, CaO-Al2O3, CaO-Al2O3-SiO2-TiO2, and CaO-MgO-Al2O3-SiO2-TiO2-(K2O) systems which originated from the ladle slag and mold flux in the production process. In order to reduce the number of micro-inclusions effectively, the control range of components in the refining slag was confirmed by the thermodynamic calculation, where the mass ratio of CaO/Al2O3 should be in the range of 1.85–1.92, and the mass fraction of SiO2 and MgO should be controlled to 7.5–20% and 6–8%, respectively. In addition, the numbers of macro-inclusions in the flat steel should be effectively reduced by optimizing the flow field of mold and preventing the secondary oxidation, and the flat steel quality problems caused by the inclusions can be improved by the optimization process above.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference17 articles.

1. Fracture analysis of forks of a heavy duty lift truck

2. Failure of forklift forks

3. Strength structure and manufacture of forks for forklifts;Wang;Sci. Technol. Enterp.,2016

4. Development of low-alloy high-strength fork flat steel;Yin;Mod. Metall.,2009

5. Analysis on the development of the material for forks;Wu;Heat Treat. Tech. Equip.,2006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3