Effect of CaO/Al2O3 Ratio in Fluorine‐Free Refining Slag with Low Basicity on the Cleanliness of SWRS82B Steel

Author:

Luo Ruiqi1,Zhao Yudong1,Wang Linzhu123ORCID,Chen Chaoyi1,Li Junqi14

Affiliation:

1. School of Materials and Metallurgy Guizhou University Guiyang Guizhou 550025 P. R. China

2. State Key Laboratory of Advanced Special Steel Shanghai University Shanghai 200444 P. R. China

3. Shougang Group Co., Ltd Shougang Shuicheng Iron & Steel (Group) Co., LTD. Liupanshui Guizhou 553028 P. R. China

4. Guizhou Provincial University Key Laboratory of High‐Performance Battery Materials Guizhou University Guiyang Guizhou 550025 P. R. China

Abstract

A fluorine‐free quaternary CaO–Al2O3–SiO2–MgO refining slag for SWRS82B coil steel is studied by considering the requirements of the steel wire. Laboratory experiments are conducted to study the equilibrium and kinetics of steel–slag reactions. The physical and chemical properties of refining slags, including the melting temperature, viscosity, and MgO solubility, are estimated by FactSage7.2 calculation. The cleanliness of SWRS82B steel refined by slags with a basicity of 1 and C/A ratio in the range of 1.36–7.13 is studied systematically. The plasticity of inclusions is studied by phase diagram and Young modulus calculation. Deoxidizing capacity and desulfurization capacity of refining slags are discussed by kinetic calculation of steel–slag reactions based on FactSage7.2 macro‐editing and the kungliga tekniska högskolan model. Slag with a composition of 42%CaO–47%SiO2–4%Al2O3–7%MgO has the best refining effect, in which impurity elements are lowest and plastic inclusions with the smallest size and least quantity are obtained. The impurity elements oxygen and sulfur in steel can be controlled for 29 and 75 ppm, respectively. The average size of inclusions is 1.54 μm. The majority of inclusions are in a liquid state at 1600 °C and Young modulus of the inclusions ranges from 99.78 to 152.87 GPa.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

State Key Laboratory of Advanced Metallurgy

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3