Molecular Simulations of Sputtering Preparation and Transformation of Surface Properties of Au/Cu Alloy Coatings Under Different Incident Energies

Author:

Zhang Linxing,Tian Sen,Peng TiefengORCID

Abstract

The surface properties of coatings during deposition are strongly influenced by temperature, particle fluxes, and compositions. In addition, the precursor incident energy also affects the surface properties of coatings during sputtering. The atomistic processes associated with the microstructure of coatings and the surface morphological evolution during sputtering are difficult to observe. Thus, in the present study, molecular dynamics simulation was employed to investigate the surface properties of Au/Cu alloy coatings (Cu substrate sputtering by Au atoms) with different incident energies (0.15 eV, 0.3 eV, 0.6 eV). Subsequently, the sputtering depth of the Au atoms, the particle distribution of the Au/Cu alloy coating system, the radial distribution function of particles in the coatings, the mean square displacement of the Cu atoms in the substrate, and the roughness of the coatings were analyzed. Results showed that the crystal structure and the sputtering depth of Au atoms were hardly influenced by the incident energy, and the incident energy had little impact on the motion of deep-lying atoms in the substrate. However, higher incident energy resulted in higher surface temperature of coatings, and more Au atoms existed in the coherent interface. Moreover, it strengthened the motion of Cu atoms and reduced the surface roughness. Therefore, the crystal structure of coatings and the motions of deep-lying atoms in the substrate are not influenced by the incident energy. However, the increase in incident energy will enhance the combination of coatings and the base while optimizing the surface structure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3