Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020

Author:

Zhang Feng,Hu Xiasong,Zhang Jing,Li Chengyi,Zhang Yupeng,Li Xilai

Abstract

Identifying the relative contributions of climate change and human activities to alpine grassland dynamics is critical for understanding grassland degradation mechanisms. In this study, first, the actual NPP (NPPa) was obtained by MOD17A3. Second, we used the Zhou Guangsheng model to simulate the potential met net primary productivity (NPPp). Finally, the NPP generated by anthropogenic activities (NPPh) was estimated by calculating the difference between NPPp and NPPa. Then, the relative contributions of climate change and human activities to NPP changes in grasslands were quantitatively assessed by analyzing trends in NPPp and NPPa. Thereby, the drivers of NPP change in the Yellow River source grassland were identified. The results showed that the temperature and precipitation in the study area showed a warm-humid climate trend from 2000 to 2020. The NPPp and NPPa increased at a rate of 1.07 g C/m2 and 1.51 g C/m2 per year, respectively, while the NPPh decreased at a rate of 0.46 g C/m2 per year. It can be seen that human activities had a positive effect on the change of NPP in the Yellow River source grassland from the change rate. The relative contribution analysis showed that 55.90% of grassland NPP increased due to climate change, 40.16% of grassland NPP increased due to human activities, and the grassland degradation was not significant. The research results can provide a theoretical basis and technical support for the next step of the Yellow River source grassland ecological protection project.

Funder

Qinghai Province Science and Technology Planning Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3