Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum

Author:

Elgat Wael A.A. AboORCID,Kordy Ahmed M.,Böhm Martin,Černý RobertORCID,Abdel-Megeed AhmedORCID,Salem Mohamed Z.M.ORCID

Abstract

Several molds are able to colonize wood and many building products or solid wood causing losses for their valuable uses. Essential oils (EOs) from aromatic plants can be used as an ecofriendly biofungicide against the growth of several molds. EOs from Eucalyptus camaldulensis, Citrus aurantium, and C. sinensis have a broad-spectrum antimicrobial activity. EOs from of E. camaldulensis air-dried aerial parts, C. aurantium leaf and C. sinensis peel, and their combinations (1:1 v/v) were evaluated for their antifungal activity against the growth of four common mold fungi (Aspergillus flavus, A. niger, A. terreus, and Fusarium culmorum). The chemical compositions of the EOs were analyzed with GC/MS. The main compounds in EO from E. camaldulensis were spathulenol (20.84%), eucalyptol (12.01%), and sabinene (9.73%); in C. aurantium were linalyl acetate (42.29%), and linalool (29.76%); and in C. sinensis were D-limonene (73.4%) and γ-terpinene (22.6%). At 50 µL/mL, C. sinensis EO showed the highest fungal mycilial growth inhibition (FMGI) percentage (86.66%) against A. flavus. C. sinensis, E. camaldulensis, and E. camaldulensis/C. sinensis showed FMGI values of 96%, 91.66%, and 75.66% respectively, against A. niger. EOs from C. aurantium and C. sinensis showed potent activity against A. terreus (100% FMGI), while C. aurantium/E. camaldulensis and E. camaldulensis/C. sinensis showed FMGI values of 74.33% and 70.66%, respectively. Potent activity against F. culmorum with 100% was observed as the application of E. camaldulensis and C. sinensis EOs at 50 µL/mL, while E. camaldulensis/C. sinensis (50 µL/mL) showed FMGI value of 65.66%. The results suggest using the EOs and their combinations from E.camaldulensis, C. aurantium, and C. sinensis as a biofungicide against molds. The potent properties of EOs offer the possibility of using them as eco-friendly, safe, and cost-effective antimicrobials for molds that could cause discoloration of the wood packaging or food spoilage.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3