An Optimized DNN Model for Real-Time Inferencing on an Embedded Device

Author:

Park Jungme1,Aryal Pawan1,Mandumula Sai Rithvick1,Asolkar Ritwik Prasad1

Affiliation:

1. College of Engineering, Kettering University, Flint, MI 48504, USA

Abstract

For many automotive functionalities in Advanced Driver Assist Systems (ADAS) and Autonomous Driving (AD), target objects are detected using state-of-the-art Deep Neural Network (DNN) technologies. However, the main challenge of recent DNN-based object detection is that it requires high computational costs. This requirement makes it challenging to deploy the DNN-based system on a vehicle for real-time inferencing. The low response time and high accuracy of automotive applications are critical factors when the system is deployed in real time. In this paper, the authors focus on deploying the computer-vision-based object detection system on the real-time service for automotive applications. First, five different vehicle detection systems are developed using transfer learning technology, which utilizes the pre-trained DNN model. The best performing DNN model showed improvements of 7.1% in Precision, 10.8% in Recall, and 8.93% in F1 score compared to the original YOLOv3 model. The developed DNN model was optimized by fusing layers horizontally and vertically to deploy it in the in-vehicle computing device. Finally, the optimized DNN model is deployed on the embedded in-vehicle computing device to run the program in real-time. Through optimization, the optimized DNN model can run 35.082 fps (frames per second) on the NVIDIA Jetson AGA, 19.385 times faster than the unoptimized DNN model. The experimental results demonstrate that the optimized transferred DNN model achieved higher accuracy and faster processing time for vehicle detection, which is vital for deploying the ADAS system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3