Q-Learning-Based Pending Zone Adjustment for Proximity Classification

Author:

Kwon Jung-Hyok1ORCID,Lee Sol-Bee2ORCID,Kim Eui-Jik2ORCID

Affiliation:

1. Smart Computing Laboratory, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Republic of Korea

2. Division of Software, Hallym University, 1 Hallymdaehak-gil, Chuncheon 24252, Gangwon-do, Republic of Korea

Abstract

This paper presents a Q-learning-based pending zone adjustment for received signal strength indicator (RSSI)-based proximity classification (QPZA). QPZA aims to improve the accuracy of RSSI-based proximity classification by adaptively adjusting the size of the pending zone, taking into account changes in the surrounding environment. The pending zone refers to an area in which the previous result of proximity classification is maintained and is expressed as a near boundary and a far boundary. QPZA uses Q-learning to expand the size of the pending zone when the noise level increases and reduce it otherwise. Specifically, it calculates the noise level using the estimation error of a device deployed at a specific location. Then, QPZA adjusts the near boundary and far boundary separately by inputting the noise level into the near and far boundary adjusters, consisting of the Q-learning agent and reward calculator. The Q-learning agent determines the next boundary using the Q-table, and the reward calculator calculates the reward using the noise level. QPZA updates the Q-table of the Q-learning agent using the reward. To evaluate the performance of QPZA, we conducted an experimental implementation and compared the accuracy of QPZA with that of the existing approach. The results showed that QPZA achieves 11.69% higher accuracy compared to the existing approach, on average.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

NRF grant funded by the Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3