Energy Consumption Optimization of a Fluid Bed Dryer in Pharmaceutical Manufacturing Using EDA (Exploratory Data Analysis)

Author:

Barriga Roberto1,Romero Miquel1ORCID,Hassan Houcine2,Nettleton David F.3ORCID

Affiliation:

1. Industrias Farmacéuticas Almirall, Ctra. N-II, Km. 593, 08740 Sant Andreu de la Barca, Spain

2. Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, Camino de Vera, No. 14, 46022 Valencia, Spain

3. IRIS Technology Solutions, Ctra. d’Esplugues, 39, 08940 Cornella de Llobregat, Spain

Abstract

In this paper, a data preprocessing methodology, EDA (Exploratory Data Analysis), is used for performing an exploration of the data captured from the sensors of a fluid bed dryer to reduce the energy consumption during the preheating phase. The objective of this process is the extraction of liquids such as water through the injection of dry and hot air. The time taken to dry a pharmaceutical product is typically uniform, independent of the product weight (Kg) or the type of product. However, the time it takes to heat up the equipment before drying can vary depending on different factors, such as the skill level of the person operating the machine. EDA (Exploratory Data Analysis) is a method of evaluating or comprehending sensor data to derive insights and key characteristics. EDA is a critical component of any data science or machine learning process. The exploration and analysis of the sensor data from experimental trials has facilitated the identification of an optimal configuration, with an average reduction in preheating time of one hour. For each processed batch of 150 kg in the fluid bed dryer, this translates into an energy saving of around 18.5 kWh, giving an annual energy saving of over 3.700 kWh.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference19 articles.

1. A holistic approach to production control: From industry 4.0 to pharma 4.0;Herwig;Pharm. Eng.,2017

2. Machine learning and genetic algorithms in pharmaceutical development and manufacturing processes;Chi;Decis. Support Syst.,2009

3. Recent advances in fluidized bed drying;Haron;IOP Conf. Ser. Mater. Sci. Eng.,2017

4. Quality-by-control of intensified continuous filtration-drying of active pharmaceutical ingredients;Destro;AIChE J.,2023

5. A performance analysis of batch fluidized bed drying of two pharmaceutical powders by desirability approach;Zammouri;Dry. Technol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3