Dynamics and Transformation of Sea Surface Gravity Waves at the Shelf of Decreasing Depth

Author:

Dolgikh Grigory I.ORCID,Gromasheva Olga S.ORCID,Dolgikh Stanislav G.ORCID,Plotnikov Alexander A.

Abstract

This paper reviews the results of the processing of synchronized data on hydrosphere pressure variations and the Earth’s crust deformation in the microseismic range (5–15 s), obtained over the course of numerous experiments, using a coastal laser strainmeter and laser meters of hydrosphere pressure variations installed in various points of the Sea of Japan shelf. Interpreting the results, we have discovered new regularities in the dynamics of surface progressive gravity waves, and their transformation into primary microseisms, when waves move at the shelf of decreasing depth. For example, we found non-isochronous behavior of progressive waves, which manifests itself in a decrease in the periods of gravity waves due to the transformation of a part of their energy into the energy of primary microseisms. Furthermore, when processing the synchronous fragments of the records, made by laser strainmeters and laser meters of hydrosphere pressure variations, we identified approximate zones of the most effective transformation of the energy of gravity progressive waves into the energy of primary microseisms, which start from the depth of less than a half-wavelength and stretch to the surf zone.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ocean-Bottom Laser Seismograph;Sensors;2022-03-25

2. Sea Level Fluctuations;Journal of Marine Science and Engineering;2022-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3