Bispectral analysis and simulation modeling of quadratic nonlinear system with specific turbulent-fluctuation-excitation-response types

Author:

Shen Yong,Shen Yu-Hang,Dong Jia-Qi,Li Jia,Shi Zhong-Bing,Zong Wen-Gang,Pan Li,Li Ji-Quan, , , ,

Abstract

There exists a kind of quadratic nonlinear system with specific type of turbulent fluctuation excitation in nature, which belongs to a special non-Gaussian input signal system. Its characteristic is that the input signal spectrum is generated by turbulent fluctuations, and the power spectrum distribution of this turbulence fluctuation signal is close to Gaussian distribution. Starting with the work of Choi et al. (1985 J. Sound Vib<i>.</i> <b>99</b> 309) and Kim et al. [1987 IEEE J. Ocean. Eng. OE- <b>12</b> 568), we extend the simulation of a specific turbulent fluctuation excited response-type quadratic nonlinear system represented by the wave excited mooring ship response, and fully develop the internal development of turbulence based on bispectral analysis technology. We also extend the simulation system and conduct systematic modeling analysis. The complete iterative method [2020 Phys. Scr. <b>95</b> 055202] is used to solve the model, and calculate the linear transfer function and quadratic nonlinear transfer function. The comparison of simulation and modeling results with the real systems and their models confirms the correctness of the results from system simulation, system modeling, and model solving. The results obtained are all in line with expectations. The coherence analysis shows that the quadratic coherence of the random wave-ship swaying system is much greater than the linear coherence, but the linear coherence of the fully developed turbulence is greater for the near Gaussian input type. The reverse computation verification or comparison with real systems indicates that the turbulence simulation and system modeling method in this work have good accuracy and high efficiency in solving algorithms, and the research results can be effectively applied to the model description and system analysis of the quadratic nonlinear systems related to specific turbulent fluctuation excitation response.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3