A Siamese Vision Transformer for Bearings Fault Diagnosis

Author:

He Qiuchen,Li ShaoboORCID,Bai Qiang,Zhang Ansi,Yang JingORCID,Shen Mingming

Abstract

Fault diagnosis methods based on deep learning have progressed greatly in recent years. However, the limited training data and complex work conditions still restrict the application of these intelligent methods. This paper proposes an intelligent bearing fault diagnosis method, i.e., Siamese Vision Transformer, suiting limited training data and complex work conditions. The Siamese Vision Transformer, combining Siamese network and Vision Transformer, is designed to efficiently extract the feature vectors of input samples in high-level space and complete the classification of the fault. In addition, a new loss function combining the Kullback-Liebler divergence both directions is proposed to improve the performance of the proposed model. Furthermore, a new training strategy termed random mask is designed to enhance input data diversity. A comparative test is conducted on the Case Western Reserve University bearing dataset and Paderborn dataset and our method achieves reasonably high accuracy with limited data and satisfactory generation capability for cross-domain tasks.

Funder

National Key Research and Development Program

Guizhou Province University talent Training Base Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3