A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer

Author:

Liu Wenkai12,Zhang Zhigang12,Zhang Jiarui12,Huang Haixiang12,Zhang Guocheng12,Peng Mingda12

Affiliation:

1. College of Engineering, South China Agricultural University, Guangzhou 510642, China

2. Key Laboratory of the Ministry of Education of China for Key Technologies for Agricultural Machine and Equipment, South China Agricultural University, Guangzhou 510642, China

Abstract

Efficient and accurate fault diagnosis plays an essential role in the safe operation of machinery. In respect of fault diagnosis, various data-driven methods based on deep learning have attracted widespread attention for research in recent years. Considering the limitations of feature representation in convolutional structures for fault diagnosis, and the demanding requirements on the quality of data for Transformer structures, an intelligent method of fault diagnosis is proposed in the present study for bearings, namely Efficient Convolutional Transformer (ECTN). Firstly, the time-frequency representation is achieved by means of short-time Fourier transform for the original signal. Secondly, the low-level local features are extracted using an efficient convolution module. Then, the global information is extracted through transformer. Finally, the results of fault diagnosis are obtained by the classifier. Moreover, experiments are conducted on two different bearing datasets to obtain the experimental results showing that the proposed method is effective in combining the advantages of CNN and transformer. In comparison with other single-structure methods of fault diagnosis, the method proposed in this study produces a better diagnostic performance in the context of limited data volume, strong noise, and variable operating conditions.

Funder

The National Key Research and Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3