Neural Network Trajectory Tracking Control on Electromagnetic Suspension Systems

Author:

Beltran-Carbajal Francisco1ORCID,Yañez-Badillo Hugo2ORCID,Tapia-Olvera Ruben3ORCID,Rosas-Caro Julio C.4ORCID,Sotelo Carlos5ORCID,Sotelo David5ORCID

Affiliation:

1. Departamento de Energía, Unidad Azcapotzalco, Universidad Autónoma Metropolitana, Azcapotzalco, Mexico City 02200, Mexico

2. Departamento de Investigación, TecNM: Tecnológico de Estudios Superiores de Tianguistenco, Tianguistenco 52650, Mexico

3. Departamento de Energía Eléctrica, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico

4. Facultad de Ingenieria, Universidad Panamericana, Alvaro del Portillo 49, Zapopan 45010, Mexico

5. Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico

Abstract

A new adaptive-like neural control strategy for motion reference trajectory tracking for a nonlinear electromagnetic suspension dynamic system is introduced. Artificial neural networks, differential flatness and sliding modes are strategically integrated in the presented adaptive neural network control design approach. The robustness and efficiency of the magnetic suspension control system on desired smooth position reference profile tracking can be improved in this fashion. A single levitation control parameter is tuned on-line from a neural adaptive perspective by using information of the reference trajectory tracking error signal only. The sliding mode discontinuous control action is approximated by a neural network-based adaptive continuous control function. Control design is firstly developed from theoretical modelling of the nonlinear physical system. Next, dependency on theoretical modelling of the nonlinear dynamic system is substantially reduced by integrating B-spline neural networks and sliding modes in the electromagnetic levitation control technique. On-line accurate estimation of uncertainty, unmeasured external disturbances and uncertain nonlinearities are conveniently evaded. The effective performance of the robust trajectory tracking levitation control approach is depicted for multiple simulation operating scenarios. The capability of active disturbance suppression is furthermore evidenced. The presented B-spline neural network trajectory tracking control design approach based on sliding modes and differential flatness can be extended to other controllable complex uncertain nonlinear dynamic systems where internal and external disturbances represent a relevant issue. Computer simulations and analytical results demonstrate the effective performance of the new adaptive neural control method.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3