Abstract
Active Suspension Systems (ASS) with control are gaining traction as researchers strive for optimal system performance. They are significant in diverse commercial vehicle applications, catering to user demands. This study employs the advanced Model Predictive Control (MPC) technique to enhance the smoothness and safety of a half-car model. The simulation results showed the prowess of MPC controllers under varied control force signal constraints, demonstrating superiority in curtailing vehicle chassis rotation angle and speed by up to 46.93% and 43.34%, respectively. The controller was compared with an artificial neural network controller utilizing only two state signals of the system, trained from MPC data, demonstrating high accuracy with R2 reaching 0.97024 and mean squared error at 7.3557×10-5. This study contributes to the refinement of ASS by focusing on practical implementation and performance enhancement.
Publisher
Engineering, Technology & Applied Science Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献