A Nonlinear Technical Indicator Selection Approach for Stock Markets. Application to the Chinese Stock Market

Author:

Alfonso GerardoORCID,Ramirez Daniel R.ORCID

Abstract

In this paper we present a combinatorial nonlinear technical indicator approach for the identification of appropriate combinations of stock technical indicators as inputs in non-linear models. This approach is illustrated with the example of Chinese stock indexes and 35 different stock technical indicators using neural networks as the chosen non-linear method. Stock market technical indicators can generate contradictory signals regarding the future performance of the stock analyzed. Furthermore, some non-linear methods, such as neural networks, can have poor generalization power when dealing with problems of high dimensionality due to the issue of local minima. Therefore, non-linear approaches that can identify appropriate combinations of input variables are of clear importance. It will be shown that the proposed approach, when using neural networks as classifiers, generates error rates lower than those using directly neural networks without dimensionality reduction. It will also be shown that merely increasing the number of neurons does not increase the accuracy. The approach proposed in this article is illustrated with an application to the stock market using neural networks but it could be applied to other fields and it can also be used with other non-linear techniques such as for instance support vector machines.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3