Author:
Horák Jakub,Krulický Tomáš
Abstract
Accurate stock price prediction is very difficult in today's economy. Accurate prediction plays an important role in helping investors improve return on equity. As a result, a number of new approaches and technologies have logically evolved in recent years to predict stock prices. One is also the method of artificial neural networks, which have many advantages over conventional methods. The aim of this paper is to compare a method of exponential time series alignment and time series alignment using artificial neural networks as tools for predicting future stock price developments on the example of the company Unipetrol. Time series alignment is performed using artificial neural networks, exponential alignment of time series, and then a comparison of time series of predictions of future stock price trends predicted using the most successful neural network and price prediction calculated by exponential time series alignment is performed. Predictions for 62 business days were obtained. The realistic picture of further possible development is surprisingly given based on the exponential alignment of time series.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献