Comparative Study of Phenomenological Residual Strength Models for Composite Materials Subjected to Fatigue: Predictions at Constant Amplitude (CA) Loading

Author:

D’Amore Alberto,Grassia Luigi

Abstract

The most popular methods of characterizing a composite’s fatigue properties and predicting its life are phenomenological, meaning the micro-mechanisms of composite structures under cyclic loading are not treated. In addition, in order to characterize the fatigue properties, only macro-parameters, namely strength and/or stiffness, are adopted. Residual strength models are mostly used in practice, given their strong relationship with safety and reliability. Indeed, since failure occurs when the strength degrades to the peak stress of fatigue loading, the remaining strength is used as a failure index. In this paper, based on a wide set of literature data, we summarize the capabilities of four models, namely Caprino’s, D’Amore’s, Sendekyj’s, and Kassapoglou’s models. The models are briefly described and then applied to the same data set, which is re-elaborated. The selected experimental data are recovered from a large experimental campaign carried out by the Federal Aviation Administration (FAA). Specimens of the same material were subjected to different loading in terms of peak stress, σmax, and stress ratio, R = σmin/σmax, ranging from pure tension (0 < R < 1) to prevalent tension (−1 < R < 0) to tension-compression (R = −1) to pure compression (1 < R < ∞). The data represent a formidable test bed to comparatively evaluate the models’ capabilities and their predictive prerogatives. The models are also tested with respect to their ability to replicate the principal responses’ feature of composite materials subjected to constant amplitude (CA) loadings. It is shown that Caprino’s and D’Amore’s models are equally capable of adequately fitting the experimental fatigue life data under given loading conditions and predicting the fatigue behavior at different loading ratios, R, with two fixed parameters. Sendekyj’s model required different parameters’ sets for each loading condition, and Kassapoglou’s model was unable to fit the majority of fatigue life data. When compared on the basis of the residual strength data, only the recently developed D’Amore’s model revealed its reliability.

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. Fatigue of Composite Materials;Reifsneider,1990

2. Fatigue of Fiber-Reinforced Composites;Vassilopoulos,2013

3. Fatigue Damage Modeling Techniques for Textile Composites: Review and Comparison With Unidirectional Composite Modeling Techniques

4. Fatigue damage modeling of fibre-reinforced composite materials: Review

5. Characterization of composites for the purpose of reliability evaluation;Halpin,1973

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3