Modelling the residual strength degradation in composite materials without using residual strength tests

Author:

Vanhari Afrooz Kazemi1ORCID,Fagan Edward2,Goggins Jamie13

Affiliation:

1. MaREI Centre, Ryan Institute and School of Engineering, University of Galway, Ireland

2. 6Synct Consulting Inc, Midland, ON, Canada

3. Construct Innovate, University of Galway, Ireland

Abstract

Residual strength models are widely used to predict the fatigue life of composite laminates under highly variable loads. However, they often require considerable experimental effort to accurately determine model parameters. This paper introduces a new approach for predicting the residual strength of composite materials with less experimental data. The method is based on two common strength-based wearout models, the Sendeckyj model and Schaff and Davidson model. The Sendeckyj model consists of an equation with two model parameters, which describes the shape of the S-N curve by fitting fatigue test data. The Schaff and Davidson model is a single-parameter function which calculates the residual strength based on the number of fatigue cycles. Using a novel mathematical algorithm, the residual strength model parameter in the Schaff and Davidson model is estimated directly from the S–N curve without running any residual strength tests. Five data sets from the literature are used to validate the new methodology. The results show that the residual strength model parameter is dependent on both the stress level and the number of loading cycles experienced at this stress level, both of which are considered in the new strategy. In addition, if the fatigue data are well distributed, the residual strength model parameter estimated by the new strategy is close to the experimental data.

Funder

Science Foundation Ireland MaREI research Centre for Energy, Climate, and Marine

Science Foundation Ireland Through an Industry Fellowship Award

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3