A Novel Manufacturing Concept of LCP Fiber-Reinforced GPET-Based Sandwich Structures with an FDM 3D-Printed Core

Author:

Andrzejewski JacekORCID,Gronikowski Marcin,Aniśko JoannaORCID

Abstract

The presented research was focused on the development of a new method of sandwich structure manufacturing involving FDM-printing (fused deposition modeling) techniques and compression molding. The presented concept allows for the preparation of thermoplastic-based composites with enhanced mechanical properties. The sample preparation process consists of 3D printing the sandwich’s core structure using the FDM method. For comparison purposes, we used two types of GPET (copolymer of polyethylene terephthalate)-based filaments, pure resin, and carbon fiber (CF)-reinforced filaments. The outer reinforcing layer “skins” of the sandwich structure were prepared from the compression molded prepregs made from the LCP (liquid-crystal polymer)-fiber fabric with the GPET-based matrix. The final product consisting of an FDM-printed core and LCP-based prepreg was prepared using the compression molding method. The prepared samples were subjected to detailed materials analyses, including thermal analyses (thermogravimetry-TGA, differencial scanning calorimetry-DSC, and dynamic thermal-mechanical analysis-DMTA) and mechanical tests (tensile, flexural, and impact). As indicated by the static test results, the modulus and strength of the prepared composites were slightly improved; however, the stiffness of the prepared materials was more related to the presence of the CF-reinforced filament than the presence of the composite prepreg. The main advantage of using the developed method is revealed during impact tests. Due to the presence of long LCP fibers, the prepared sandwich samples are characterized by very high impact resistance. The impact strength increased from 1.7 kJ/m2 for pure GPET samples to 50.4 kJ/m2 for sandwich composites. For GPET/CF samples, the increase is even greater. The advantages of the developed solution were illustrated during puncture tests in which none of the sandwich samples were pierced.

Funder

National Science Center

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3