Taguchi design and optimization of the PLA/PCL composite filament with plasticizer and compatibilizer additives for optimal 3D printing

Author:

Yao Ben1ORCID,Zhu Yalin1,Xu Zhining1,Wu Yunli1,Yang Liang1,Liu Jianan1,Shang Jianping1,Fan Jingyuan2,Ouyang Lizhi3,Fan Hua‐Jun Shawn1

Affiliation:

1. College of Chemical Engineering Sichuan University of Science and Engineering Zigong Sichuan People's Republic of China

2. Carnegie Vanguard High School Houston Texas USA

3. Department of Physics and Mathematics Tennessee State University Nashville Tennessee USA

Abstract

Abstract3D printing (3DP) has brought endless possibilities to the manufacturing industry. Biodegradable high‐polymer materials such as polylactic acid (PLA) and polycaprolactone (PCL) have attracted widespread attention. However, to optimize printing performance, this study prepared six PLA/PCL composite materials with ratios of 4:6, 5:5, and 6:4, by adding Polyethylene Glycol 4000 (PEG 4000) as a plasticizer and nano silica as a reinforcing agent. Parameters that can affect printing quality, including formulation, printing temperature (150, 170, and 190°C), filling density (305, 40%, and 50%), and printing speed (20, 30, and 40 mm/s), were examined and optimized. The optimal factor level combination determined by Taguchi fractional factorial design were silica addition 0.6 g, PLA content 60 wt%, printing temperature 190°C, infill density 50%, and printing speed 20 mm/s. The obtained minimum error value was 0.338 mm. Analysis of variance revealed the statistical significance of PLA content and printing temperature. A general linear model was established for result prediction, showing a difference of 9.25% from the actual error values. SEM results indicated poor compatibility between PLA and PCL in the melt‐blended mixture, while the addition of SiO2 nanoparticles facilitated PCL and PLA crystallization. DSC analysis demonstrated that the incorporation of PLC and SiO2 led to an increase in crystallinity, with 5PLA/5PCL/SiO2 exhibiting the highest crystallinity at 51.4%. Tensile testing results showed that the addition of 50 wt% PCL to PLA significantly improved the fracture elongation of the PLA/PCL material with a 5:5 formulation, averaging about 4 times higher than that of pure PLA, while the tensile strength decreased by 1.5 times. This study not only expands the research on PLA/PCL blends but also provides process guidance for 3D printing of the materials.

Funder

Natural Science Foundation of Sichuan Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3