Number Concentration Measurements of Polystyrene Submicrometer Particles

Author:

DeRose Paul C.,Benkstein Kurt D.ORCID,Elsheikh Elzafir B.,Gaigalas Adolfas K.,Lehman Sean E.,Ripple Dean C.,Tian Linhua,Vreeland Wyatt N.,Welch Eric J.,York Adam W.,Zhang Yu-Zhong,Wang LiliORCID

Abstract

The number of techniques to measure number concentrations and size distributions of submicrometer particles has recently increased. Submicrometer particle standards are needed to improve the accuracy and reproducibility of these techniques. The number concentrations of fluorescently labeled polystyrene submicrometer sphere suspensions with nominal 100 nm, 200 nm and 500 nm diameters were measured using seven different techniques. Diameter values were also measured where possible. The diameter values were found to agree within 20%, but the number concentration values differed by as much as a factor of two. Accuracy and reproducibility related with the different techniques are discussed with the goal of using number concentration standards for instrument calibration. Three of the techniques were used to determine SI-traceable number concentration values, and the three independent values were averaged to give consensus values. This consensus approach is proposed as a protocol for certifying SI-traceable number concentration standards.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3