Instability Monitoring and Numerical Analysis of Typical Coal Mines in Southwest China Based on DS-InSAR

Author:

Liu MaoqiORCID,Long Sichun,Wu Wenhao,Liu Ping,Zhang Liya,Zhu Chuanguang

Abstract

Most of the coal mines in Southwest China are located in mountainous areas with high vegetation coverage, and most activities are carried out under the mountains. The deformation monitoring and mechanical behavior analysis of the mining area helps reveal the typical mountain deformation and failure mechanism caused by underground mining activities and reduce the risk of mountain collapse in the mining area. In this manuscript, a research method for mountain stability in mining areas is proposed, which combines InSAR deformation monitoring with numerical analysis. Based on the high-precision deformation information obtained by DS-InSAR and the landslide range, a three-dimensional explicit finite difference numerical analysis method was used to reconstruct the landslide model. According to the layout of the coal mining working face, the variation mechanism of overlying stratum stress and the mountain slip in the coal mining process is inverted, and the mechanism of mountain failure and instability in the mining area is analysed. Based on the sentinel data, the experiment performed time series monitoring and inversion analysis of the mountain collapse in Nayong, Guizhou, China. The results show that mining activities a certain distance from the mountain will affect mountain stability, and there are specific mechanisms. From 2015 to 2017, the stress redistribution of overlying strata above the goaf area resulted in dense longitudinal cracks in the landslide body due to coal mining. The mountain is in a continuous damage state, and the supporting force to prevent collapse continues to decrease, resulting in a gradual decrease in landslide stability. Both the time series DS-InSAR monitoring results and numerical simulation results verify the actual occurrence and development of the on-site subsidence.

Funder

National Natural Science Foundation of China

Provincial Natural Science Foundation of Hunan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3