Abstract
Phosphorus (P) recovery from alternative P-rich residues is essential to meet the growing demands of food production globally. Despite sewage sludge being a potential source for P, its direct application on agricultural land is controversial because of the obvious concerns related to heavy metals and organic pollutants. Further, most of the available P recovery and sludge management technologies are cost-intensive as they require mandatory dewatering of sewage sludge. In this regard, hydrothermal carbonization (HTC) has gained great attention as a promising process to effectively treat the wet sewage sludge without it having to be dewatered, and it simultaneously enables the recovery of P. This study was conducted to analyse and compare the influence of acid (H2SO4) addition during and after HTC of sewage sludge on P leaching and the characteristics of hydrochar. The obtained results suggested that despite using the same amount of H2SO4, P leaching from solid to liquid phase was significantly higher when acid was used after the HTC of sewage sludge in comparison with acid utilization during the HTC process. After HTC, the reduction in acid-buffering capacity of sewage sludge and increase in solubility of phosphate precipitating metal ions had a greater influence on the mobilization of P from solid to liquid phase. In contrast, utilization of H2SO4 in different process conditions did not have a great influence on proximate analysis results and calorific value of consequently produced hydrochar.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献