Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China

Author:

Guo Xinxin,Fu QiangORCID,Hang Yanhong,Lu He,Gao Fengjie,Si Jingbo

Abstract

Soil moisture, as a crucial factor in the eco-hydrological process, is of great importance for food production, land management in response to water and soil loss, geomorphic processes, and environmental protection. Understanding the spatial variability of soil moisture induced by different land use types and topographic features is conducive to advancing the adjustment of the land use structure and preventing soil erosion on the hillslopes in the black soil (Mollisols) area of Northeast China. Classical statistical methods and Canonical Correspondence Analysis were used to analyze the spatial heterogeneity of soil moisture at 0–20, 20–40, and 40–60 cm on slopes, to identify the main controlling factors and their relative contributions. The results suggested that: the average soil moisture content followed a decreasing order of grassland > shrubland > soybean land > maize land > adzuki bean (Vigna angularis) land > forestland; the profile soil moisture content (SMC) patterns could be divided into four types, related to the comprehensive influence of vegetation types, root system characteristics, and topographic attributes; the spatial variability of soil moisture was strongly influenced by slope gradient, followed by land use types and elevation and slope position, while slope aspect had the least impact; and finally, land use type had a greater impact on the deep layer than the surface layer, while on the contrary, the influence of the topographic attributes on the deep layer was smaller than on the surface layer. Land use types and topographical elements work together on the soil moisture variability and vertical patterns at differing depths. This study provides an insight into policy making of land resource management and can be used in the modeling of hydrological processes.

Funder

Natural Science Foundation of Heilongjiang Province

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3